Graphing Derivatives

1. Below is a graph of a derivative function $y=f^{\prime}(x)$.

(a) Based on this graph, for what value(s) of x does $f(x)$ have a maximum value?
(a) $x=-1.5$
(b) $x=-4$ and $x=4$
(c) $x=1$
(d) $x=-8, x=-4, x=1$, and $x=4$
(e) $f(x)$ does not have a maximum value.
(b) Based on this graph, for what value(s) of x is $f(x)$ increasing?
(a) $x<-8$
(b) $-8<x<-4$
(c) $-4<x<1$
(d) $1<x<4$
(e) $4<x$.
2. $\quad \mathbf{F} \quad$ If $g^{\prime}(x)>0$ for all x in the interval $(0,7)$, then $g(5)>g(2)$.
3. The graph of a twice-differentiable function f is shown below. Note that $f^{\prime \prime}(x)=\frac{d f^{\prime}}{d x}(x)$. Which of the following is true?

(a) $f^{\prime \prime}(2)<f(2)<f^{\prime}(2)$
(b) $f^{\prime}(2)<f(2)<f^{\prime \prime}(2)$
(c) $f^{\prime \prime}(2)<f^{\prime}(2)<f(2)$
(d) $f(2)<f^{\prime \prime}(2)<f^{\prime}(2)$
(e) $f(2)<f^{\prime}(2)<f^{\prime \prime}(2)$
4. The following diagram shows the graphs of a function f, together with the graphs of its first derivative f^{\prime} and second derivative $f^{\prime \prime}$. Which one is which? Label the three graphs with f, f^{\prime} and $f^{\prime \prime}$.

5. Below is a graph of the function f. Based on this graph, draw a graph of f^{\prime}.

